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A digital system has been constructed for the generation of wideband gaussian
noise with a spectrum which is flat to within +0.5 dB from 0 to 10 MHz. These
characteristics are substantially better than those of commercially available analog
noise generators, and are required in testing and simulation of wideband com-
munications systems. The noise is generated by the analog summation of thirty
essentially independent binary waveforms, clocked at 35 MHz, and low-pass

filtered to 10 MHz.

l. Introduction

A digital system has been constructed for the generation
of wideband gaussian noise with a spectrum which is flat
to within =0.5 dB from 0 to 10 MHz. This is substantially
better than other noise sources now available. Noise of
this bandwidth and spectral flatness is required in the
testing and simulation of communications systems whose
performance in the presence of noise must be accurately
known. For example, by doing this accurate testing, mar-
gins of uncertainty are reduced, so that data rates can
increase. The first application of this noise generator was
in the evaluation of a prototype model of a code-regenera-
tive spacecraft ranging transponder, the ranging clean-up
loop for outer planet use.

Il. General Description

Wideband video gaussian noise is required to test com-
munications systems and in the simulation of many other
types of systems. The required noise bandwidths may
range from zero or close to zero Hertz to several Mega-
hertz. Commercially available analog noise generators,
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using noise tube or diode sources, are often not satisfac-
tory for several possible reasons: the bandwidth may not
be wide enough; the spectral density may not be flat
enough in the passband; the probability distribution may
not be close enough to gaussian; and the stability of the
noise parameters may not be good enough. The amplitude
distribution is often so skewed that the sample waveform
is visibly asymmetric when viewed on an oscilloscope,
and the spectral density is typically specified as flat to
within only =1 or +3 dB. Noise with these characteristics
is clearly not acceptable in testing a communication sys-
tem whose performance must be known to within one or
two tenths of a decibel.

Recently, noise generators have become available which
use digital logic to generate pseudo-random binary wave-
forms. The binary waveforms are then low-pass filtered to
obtain quasi-gaussian noise. The principle is that accord-
ing to the Central Limit Theorem, the distribution of the
sum of a number of independent random variables tends
toward gaussian as the number of terms in the sum is
increased. The low-pass filtering performs the required
summing. The problem with this type of system is that the
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distribution of the pseudonoise becomes more gaussian
only as the filter bandwidth is made progressively smaller
with respect to the clock rate of the binary sequence. For
some applications, the noise may be close enough to gaus-
sian only if the clock rate is hundreds of times higher than
the filter bandwidth, which means that the noise band-
width will be much less than the digital clock rate—per-
haps 100 kHz if the clock rate is 35 to 50 MHz.

Since the closeness of the distribution to gaussian de-
pends on the number of independent terms in a summa-
tion, we observe that these terms can be generated either
sequentially, as above, or in parallel. For example, the out-
puts of a large number of different binary pseudo-noise
generators could be summed, and then low-pass filtered
only enough to reduce the transient effects of the clocking
and to shape the spectrum. It is this general principle
which is used in the noise generator described here. One
major improvement is made, however, which considerably
reduces the hardware: a large number of different shifts
of the same sequence are generated simultaneously, with
each additional shift requiring only one simple integrated
circuit, not an entire new shift register. The different shifts
are essentially uncorrelated, and are far enough apart in
time so that no shift contributes more than once to any
experiment. The actual system constructed is clocked at
35 MHz, and the quasi-gaussian noise has a spectrum
which is flat to +0.5 dB from 0 to 10 MHz.

lll. Algebraic Theory

Suppose we have two maximal length linear shift regis-
ter (pn—) sequences generated in shift registers X and Y
of relatively prime lengths N and M, respectively. The
sequences at the various shift register stages are labeled
X; (k) and Y; (k) where the subscripts i = 0,1, - - - ,N—-1
and 1 =0,1, - - - |M — 1 denote the register stages, the
argument k denotes time, and the binary values are taken
to be +1 and —1. The shifting is from higher to lower
numbered stages, so

Xi (k + 1) = X“l (k),
Yi(k+1)=Y,,(k),

k=01 - N—2
k=01 ,M—2

and Xy.,(k + 1) and Yy, (k + 1) are linear functions of
the values in the respective registers at time k.

We can now form the sequences Z;; (k) = X; (k) Y; (k).
The periods of the X, Y, and Z sequences are p, = 2¥ — 1,
py=2"—1, and p, =p,p, = 2¥¥ — ¥ _ 9¥ 1 |1 Note
that for reasonably large N and M, p- is almost equal to
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the maximum length of a linear sequence generated by a
shift register of N + M stages.

The correlation properties of Z are similar to those of
X and Y, so that Z is approximately a white noise se-
quence. The normalized in phase correlations of X and ¥
are 1, and the out of phase correlations are -1/p; and
—1/p,, respectively. For Z, the in phase correlation is 1,
and the out-of-phase correlation is +1/p., except for
phase shifts np, and np, (mod p,), at which points it is
—~1/p, and —1/p,, respectively. For reasonably large p,
and p,, all of the out of phase correlations are small, as
desired for “white” noise. The cycle and add property of
pn-sequences also extends to the product sequences, with
similar exceptions as for the correlation properties.

One property of pn-sequences which does not extend to
the product sequence is that of having all of the p, (or p,)
possible non-trivial N (or M)-tuples occur exactly once in
the cycle of length p, (or p,). Almost all possible (N + M)-
tuples occur in Z, however. There are 2¥+# — ] possible
nontrivial (N + M)-tuples in a maximum length linear
sequence from a shift register of N stages, but the period of
Z is 2% + 2% — 2 less than this. Hence all but 2¥ + 2% — 9
of the nontrivial (N + M)-tuples occur. The number not
occurring is relatively small if N and M are moderately
large, so that the effect on the randomness properties of
the sequence is negligible.

The phase relationships between the Z;; (k) can be de-
termined by the phase of each with respect to a reference
sequence, which we choose to be Z,, (k). Denoting the
delay from Z;; to Z,, by t;;, we have Z;; (k) = Z,, (k + ti5)
for all k. This requires that X; (k) = X, (k + ti;) and
Y; (k) =Y, (k + ti;), both for all k. Since

Xi(k) = X, (k + i+ np,)
for all n and k, and
Y (k) =Y, (k +j+ mp,)

for all m and k, we have

ti,‘ =1 (rnod p,)
={(modp,)

Now, since p, and p, are relatively prime, we can use the
Euclidean algorithm to find @, and a, such that

a:p: + aypy, =1
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Finally,
tij=ia,p: + ja,py (mod p:p,)

For the noise generator constructed, N and M were
chosen to be 41 and 23, respectively. For this case,

@, = 271+ 215 216 £ 915 4 911 1 95 4 96 4 93 4 90

and

ap=1—ap,=a, (2 - 1)
Expressed as binary fractions,
azp./p. =~ 0.0100101001 - - -

which is approximately a repeating fraction equal to 9/31.
Thus

9 .
ti]‘:ﬁ(l—l)P:

with the approximation being valid for small enough i
and j that the repeating fraction approximation is good.
We see from this that by carefully selecting pairs ¢ and 4,
we can obtain 31 shifts of Z;; which are approximately
equally spaced modulo p..

In the actual implementation, 30 such shifts were used.
These shifts could have been chosen by fixing j and choos-
ing 30 consecutive taps of X. This has the disadvantage,
however, that although the Z;; thus obtained would be
uncorrelated, adjacent sums of the thirty Z;; are highly
dependent, since 29 of the 30 terms in adjacent sums
would be the same, except possibly for the sign. This is
seen by expanding the sums and comparing, for example,

z X, (K) Y (K) = X, (k) [Yo (K) + 2 Y (M)

and

(WF

SKk+DYi(k+ D) =XE+1D) I Y (k)

i=0

H

= X, (k+ D [Ye(R) + 3 Vi (K]

These two sums differ only by Y, (k) — Ya (k) when
X, (k) = X, (k + 1), and are similarly related but of oppo-
site sign when X, (k) = —X, (k + 1). For this reason, care
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was taken to use different X; for each Z, and to use no ¥;
more than twice. Some duplication of Y;’s was necessary,
because only 21 were available. The actual Z;; selected
correspond to (i,f) =(n,21 —n), n=0,1, - - - ,21, and
(t,7) = (30,7), (31,6), (28,1), (23,4), (36,5), (35,2), (38,3),
and (37,0).

With a system clock rate of 35 MHz, Z repeats approxi-
mately every 17000 years, and each pair of Z;;’s is sepa-
rated by over 500 years.

The shift register sequences are defined by the poly-
nomials

M4+t +x+1=0
and
y23+y17+y11+y5+1=0

The polynomial for X was selected because the nonzero
terms are consecutive, which means that implementation
can be accomplished by toggling three of the stages ac-
cording to the inputs to these stages, instead of imple-
menting the multiplication. The polynomial for Y was
chosen for a more important reason. This is that this
polynomial divides no trinomials of degree less than 500.
This algebraic property tends to lessen any possible skew-
edness of the distribution of sums of consecutive terms
in the sequence (Ref. 1). To eliminate any residual skew-
edness, half of the thirty Z;;’s generated are inverted in
the final summation. Since their distributions are identical,
this symmetrizes the distribution of the sum.

IV. Implementation

A block diagram of the noise generator is shown in
Fig. 1. The digital portion is implemented entirely out of
dual-in-line integrated circuit flip-flops, primarily because
higher speed circuitry is available in flip-flops than in shift
registers, and because access to both outputs of most
stages was required. Since logical “1” and “0” in the digi-
tal circuitry correspond to —1 and +1, respectively, of
the previous section, the EXCLUSIVE-OR operation cor-
responds to multiplication. The multiplications of the X;
and Y; are thus implemented using AND-OR input flip-
flops connected to perform EXCLUSIVE-OR’s. This tech-
nique is also used to generate the feedback function for
the Y register. For the X register, it was only necessary
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to connect three stages so as to toggle when the previous
stage is logically “1,” instead of shifting, because ot the
previously mentioned property of the polynomial.

The outputs of the Z;; are summed using a resistor net-
work at the input to a wideband operational amplifier.
At the amplifier output, the signal is filtered by a parallel
tank circuit to eliminate the clock frequency, and passed
through a 50-Q resistor to provide a standard 50-0 source
impedance. When loaded with 50 Q, the spectrum of the

system output is flat to within about =0.5 dB from zero
to 10 MHz.

It is planned to increase the clock rate of the system
to about 50 MHz by replacing the current integrated cir-
cuits with faster but PIN-compatible circuits. When this
is accomplished, the output spectrum will be further
shaped by filtering to obtain the flattest spectrum pos-
sible, and statistical tests of the noise properties will be
undertaken,
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Fig. 1. Noise generator block diagram
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